Lancet Preprint : Admission Screening Testing of Patients & Staff N95 Masks are Cost-Effective in Reducing COVID-19 Hospital Acquired Infections

Abstract

Background: COVID-19 outbreaks in acute care settings can have severe consequences for patients due to their underlying vulnerabilities, and can be costly due to additional patient bed days and the need to replace isolating staff. This study assessed the cost-effectiveness of clinical staff N95 masks and admission screening testing of patients to reduce COVID-19 hospital-acquired infections.

Methods: An agent-based model was calibrated to data on 178 outbreaks in acute care settings in Victoria, Australia between October 2021 and July 2023. Outbreaks were simulated under different combinations of staff masking (surgical, N95) and patient admission screening testing (none, RAT, PCR). For each scenario, average diagnoses, COVID-19 deaths, quality-adjusted life years (QALYs) from discharged patients, and costs (masks, testing, patient COVID-19 bed days, staff replacement costs while isolating) from acute COVID-19 were estimated over a 12-month period.

Findings: Compared to no admission screening testing and staff surgical masks, all scenarios were cost saving with health gains. Staff N95s + RAT admission screening of patients was the cheapest, saving A$78.4M [95%UI 44.4M-135.3M] and preventing 1,543 [1,070-2,146] deaths state-wide per annum. Both interventions were individually beneficial: staff N95s in isolation saved A$54.7M and 854 deaths state-wide per annum, while RAT admission screening of patients in isolation saved A$57.6M and 1,176 deaths state-wide per annum.

Interpretation: In acute care settings, staff N95 mask use and admission screening testing of patients can reduce hospital-acquired COVID-19 infections, COVID-19 deaths, and are cost-saving because of reduced patient bed days and staff replacement needs.”

Download paper here

Previous
Previous

BMC Infectious Diseases : “hybrid immunity has limited impact on future COVID-19 waves with immune-escape variants.”

Next
Next

WHO : Indoor airborne risk assessment in the context of SARS-CoV-2